首页 > 继承实现的原理、子类中调用父类的方法、封装

继承实现的原理、子类中调用父类的方法、封装

一、继承实现的原来

1、继承顺序

 Python的类可以继承多个类。继承多个类的时候,其属性的寻找的方法有两种,分别是深度优先广度优先

如下的结构,新式类和经典类的属性查找顺序都一致。顺序为D--->A--->E--->B--->C。

复制代码
class E:def test(self):print('from E')
class A(E):def test(self):print('from A')
class B:def test(self):print('from B')
class C:def test(self):print('from C')
class D(A,B,C):def test(self):print('from D')
d=D()
d.test()
print(D.mro())  #新式类才可以查看.mro()方法查看查找顺序
'''
from D
[, , , , , ]
'''
复制代码

如下的结构,新式类和经典类的属性查找顺序就不一样了。

经典类遵循深度优先,其顺序为:F--->E--->B--->A--->F--->C--->G--->D

新式类遵循广度优先,其顺序为:F--->E--->B--->F--->C--->G--->D--->A

 2、继承原理

python到底是如何实现继承的,对于你定义的每一个类,python会计算出一个方法解析顺序(MRO)列表,这个MRO列表就是一个简单的所有基类的线性顺序列表,例如:

print(D.mro())
'''
[, , , , , ]
'''

为了实现继承,python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。

而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理,它实际上就是合并所有父类的MRO列表并遵循如下三条准则:

1.子类会先于父类被检查。

2.多个父类会根据它们在列表中的顺序被检查。

3.如果对下一个类存在两个合法的选择,选择第一个父类。

 二、子类中调用父类的方法

子类继承了父类的方法,然后想进行修改,注意了是基于原有的基础上修改,那么就需要在子类中调用父类的方法。

方法一:父类名.父类方法()

 View Code

 方法二:super()

 View Code

 不用super引发的惨案

复制代码
#每个类中都继承了且重写了父类的方法
class A:def __init__(self):print('A的构造方法')class B(A):def __init__(self):print('B的构造方法')A.__init__(self)
class C(A):def __init__(self):print('C的构造方法')A.__init__(self)class D(B,C):def __init__(self):print('D的构造方法')B.__init__(self)C.__init__(self)
f1=D()
print(D.__mro__) 
'''
D的构造方法
B的构造方法
A的构造方法
C的构造方法
A的构造方法
(, , , , )
'''
复制代码

 使用super()的结果

复制代码
class A:def __init__(self):print('A的构造方法')class B(A):def __init__(self):print('B的构造方法')super().__init__()    #super(B,self).__init__()
class C(A):def __init__(self):print('C的构造方法')super().__init__()    #super(C,self).__init__()class D(B,C):def __init__(self):print('D的构造方法')super().__init__()    #super(D,self).__init__()# C.__init__(self)
f1=D()
print(D.__mro__)
'''
D的构造方法
B的构造方法
C的构造方法
A的构造方法
(, , , , )
'''
复制代码

 当你使用super()函数时,Python会在MRO列表上继续搜索下一个类。只要每个重定义的方法统一使用super()并只调用它一次,那么控制流最终会遍历完整个MRO列表,每个方法也只会被调用一次(注意注意注意:使用super调用的所有属性,都是从MRO列表当前的位置往后找,千万不要通过看代码去找继承关系,一定要看MRO列表

三、封装

1、要封装什么

封装数据和方法

2、为什么要封装

封装不是单纯意义的隐藏:

  1:封装数据的主要原因是:保护隐私

  2:封装方法的主要原因是:隔离复杂度

3、封装分为两个层面

封装其实分为两个层面,但无论哪种层面的封装,都要对外界提供好访问你内部隐藏内容的接口(接口可以理解为入口,有了这个入口,使用者无需且不能够直接访问到内部隐藏的细节,只能走接口,并且我们可以在接口的实现上附加更多的处理逻辑,从而严格控制使用者的访问。

第一个层面的封装(什么都不用做):创建类和对象会分别创建二者的名称空间,我们只能用类名.或者obj.的方式去访问里面的名字,这本身就是一种封装。

注意:对于这一层面的封装(隐藏),类名.和实例名.就是访问隐藏属性的接口

第二个层面的封装:类中把某些属性和方法隐藏起来(或者说定义成私有的),只在类的内部使用、外部无法访问,或者留下少量接口(函数)供外部访问。

在python中用双下划线的方式实现隐藏属性(设置成私有的)

类中所有双下划线开头的名称如__x都会自动变形成:_类名__x的形式:

复制代码
class A:__N=0 #类的数据属性就应该是共享的,但是语法上是可以把类的数据属性设置成私有的如__N,会变形为_A__Ndef __init__(self):self.__X=10 #变形为self._A__Xdef __foo(self): #变形为_A__fooprint('from A')def bar(self):self.__foo() #只有在类内部才可以通过__foo的形式访问到.
复制代码
复制代码
class Teacher:def __init__(self,name,age):self.__name=nameself.__age=agedef tell_info(self):print('姓名:%s,年龄:%s' %(self.__name,self.__age))def set_info(self,name,age):if not isinstance(name,str):raise TypeError('姓名必须是字符串类型')if not isinstance(age,int):raise TypeError('年龄必须是整型')self.__name=nameself.__age=aget=Teacher('egon',18)
t.tell_info()t.set_info('egon',19)
t.tell_info()
复制代码

这种自动变形的特点:

1.类中定义的__x只能在内部使用,如self.__x,引用的就是变形的结果。

2.这种变形其实正是针对外部的变形,在外部是无法通过__x这个名字访问到的。

2.在子类定义的__x不会覆盖在父类定义的__x,因为子类中变形成了:_子类名__x,而父类中变形成了:_父类名__x,即双下滑线开头的属性在继承给子类时,子类是无法覆盖的。

注意:对于这一层面的封装(隐藏),我们需要在类中定义一个函数(接口函数)在它内部访问被隐藏的属性,然后外部就可以使用了。

 

这种变形需要注意的问题是:

1.这种机制也并没有真正意义上限制我们从外部直接访问属性,知道了类名和属性名就可以拼出名字:_类名__属性,然后就可以访问了,如a._A__N

2.变形的过程只在类的定义是发生一次,在定义后的赋值操作,不会变形。

3.在继承中,父类如果不想让子类覆盖自己的方法,可以将方法定义为私有的。

复制代码
#正常情况
>>> class A:
...     def fa(self):
...         print('from A')
...     def test(self):
...         self.fa()
... 
>>> class B(A):
...     def fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from B
复制代码
复制代码
#把fa定义成私有的,即__fa
>>> class A:
...     def __fa(self): #在定义时就变形为_A__fa
...         print('from A')
...     def test(self):
...         self.__fa() #只会与自己所在的类为准,即调用_A__fa
... 
>>> class B(A):
...     def __fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from A
复制代码

python并不会真的阻止你访问私有的属性,模块也遵循这种约定,如果模块名以单下划线开头,那么from module import *时不能被导入,但是你from module import _private_module依然是可以导入的

其实很多时候你去调用一个模块的功能时会遇到单下划线开头的(socket._socket,sys._home,sys._clear_type_cache),这些都是私有的,原则上是供内部调用的,作为外部的你,一意孤行也是可以用的,只不过显得稍微傻逼一点点。

4、特性(property)

1.什么是特性property

property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值

例一:BMI指数(bmi是计算而来的,但很明显它听起来像是一个属性而非方法,如果我们将其做成一个属性,更便于理解)

成人的BMI数值:
过轻:低于18.5
正常:18.5-23.9
过重:24-27
肥胖:28-32
非常肥胖, 高于32
体质指数(BMI)=体重(kg)÷身高^2(m)
EX:70kg÷(1.75×1.75)=22.86
复制代码
class People:def __init__(self,name,weight,height):self.name=nameself.weight=weightself.height=height@propertydef bmi(self):return self.weight / (self.height**2)p1=People('egon',75,1.85)
print(p1.bmi)
复制代码

例二、圆的周长和面积

复制代码
import math
class Circle:def __init__(self,radius): #圆的半径radiusself.radius=radius@propertydef area(self):return math.pi * self.radius**2 #计算面积@propertydef perimeter(self):return 2*math.pi*self.radius #计算周长c=Circle(10)
print(c.radius)
print(c.area) #可以向访问数据属性一样去访问area,会触发一个函数的执行,动态计算出一个值
print(c.perimeter) #同上
'''
输出结果:
314.1592653589793
62.83185307179586
'''
复制代码

注意:此时的特性arear和perimeter不能被赋值

c.area=3 #为特性area赋值
'''
抛出异常:
AttributeError: can't set attribute
'''

2.为什么要用property

将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉自己的name是执行了一个函数然后计算出来的,这种特性的使用方式遵循了统一访问的原则。

复制代码
ps:面向对象的封装有三种方式:
【public】
这种其实就是不封装,是对外公开的
【protected】
这种封装方式对外不公开,但对朋友(friend)或者子类公开
【private】
这种封装对谁都不公开
复制代码

 

python并没有在语法上把它们三个内建到自己的class机制中,在C++里一般会将所有的所有的数据都设置为私有的,然后提供set和get方法(接口)去设置和获取,在python中通过property方法可以实现。

复制代码
class Foo:def __init__(self,val):self.__NAME=val #将所有的数据属性都隐藏起来@propertydef name(self):return self.__NAME #obj.name访问的是self.__NAME(这也是真实值的存放位置)@name.setterdef name(self,value):if not isinstance(value,str):  #在设定值之前进行类型检查raise TypeError('%s must be str' %value)self.__NAME=value #通过类型检查后,将值value存放到真实的位置[email protected] name(self):raise TypeError('Can not delete')f=Foo('egon')
print(f.name)
# f.name=10 #抛出异常'TypeError: 10 must be str'
del f.name #抛出异常'TypeError: Can not delete'

转载于:https://www.cnblogs.com/1204guo/p/7123300.html

更多相关:

  • 在C++有两种字符串流,一种在sstream中定义, 另一种在strstream中定义。 它们实现的东西基本一样。 strstream里包含 class strstreambuf; class istrstream; class ostrstream; class strstream; 它们是基于C类型字符串char*编写的...

  • 此文章完成度【100%】留着以后忘记的回顾。多写多练多思考,我会努力写出有意思的demo,如果知识点有错误、误导,欢迎大家在评论处写下你的感想或者纠错。     ORM介绍:对象关系映射(英语:(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),是一种程序技术,用于实现面向对象编程...

  • Bootstrap框架和inconfont、font-awesome使用 iconfont的使用:https://www.cnblogs.com/clschao/articles/10387580.html Bootstrap介绍   Bootstrap是Twitter开源的基于HTML、CSS、JavaScript的前端框架。  ...

  • Log4j->SLF4j->Logback是同一个人开发的 import lombok.extern.slf4j.Slf4j; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.boot.test.context.Spr...

  • HTML页面代码块: 1 2 3 4 5 6

    python字符串基本形式_python字符串常用方式

    class str(basestring):"""str(object='') -> stringReturn a nice string representation of the object.If the argument is a string, the return value is the same object."""d...

  • 目录结构: contents structure [-] 类的基本使用专有方法继承单重继承多重继承砖石继承 1.类的基本使用 下面是类使用的一个简单案例, class person:"person 类的描述信息"def __init__(self,name="",age=0):self.name = nameself.age =...

  • 一、反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力(自省)。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在Lisp和面向对象方面取得了成绩。 python面向对象中的反射:通过字符串的形式操作对象相关的属性。pytho...

  • 一、set集合的方法 set不是特别常用,但是set的一些特性可以方便处理一些特殊情况。 集合(set)是一个无序不重复元素的序列。 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。 创建格式: parame = {value01,va...

  • 1>UITextField实现leftView: self.inputTextField = [[UITextField alloc]initWithFrame:CGRectMake(10, 10, 200, 25)];self.inputTextField.delegate = self;self.inputTextField....

  • 来源:公众号|计算机视觉工坊(系投稿)作者:仲夏夜之星「3D视觉工坊」技术交流群已经成立,目前大约有12000人,方向主要涉及3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、...

  • 点云PCL免费知识星球,点云论文速读。文章:Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles作者:Ern˝o Horváth  , Claudiu Pozna ,and Miklós Unger编译:点云PCL代码:http...

  • 文章:Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment作者:Xiyue Guo, Junjie Hu, Junfeng Chen, Fuqin Deng, T...

  • 点云PCL免费知识星球,点云论文速读。文章:Robust Place Recognition using an Imaging Lidar作者:Tixiao Shan, Brendan Englot, Fabio Duarte, Carlo Ratti, and Daniela Rus编译:点云PCL(ICRA 2021)开源代码:...

  • 文章:A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays作者:Jens Grubert , Yuta Itoh, Kenneth Moser编译:点云PCL本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PD...