首页 > PCL深度图像(2)

PCL深度图像(2)

(1)点云到深度图与可视化的实现

 

区分点云与深度图本质的区别

1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。

2.点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由 于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。点云格式有*.las ;*.pcd; *.txt等。

深度图像经过坐标转换可以计算为点云数据;有规则及必要信息的点云数据可以反算为深度图像

rangeimage是来自传感器一个特定角度拍摄的一个三维场景获取的有规则的有焦距等基本信息的深度图。

深度图像的像素值代表从传感器到物体的距离或者深度值。

RangeImage类的继承于PointCloud主要的功能实现一个特定的视点得到的一个三维场景的深度图像,继承关系为

所以我们知道有规则及必要信息就可以反算为深度图像。那么我们就可以直接创建一个有序的规则的点云,比如一张平面,或者我们直接使用Kinect获取的点云来可视化深度的图,所以首先分析程序中是如果实现的点云到深度图的转变的,(程序的注释是我自己的理解,注释的比较详

更多相关:

  • 点云PCL免费知识星球,点云论文速读。文章:TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo作者:Lukas Koestler Nan Yang y Niclas Zeller Daniel Cremers编译:点云PCL代码:h...

  • 摘要 在本文中,我们提出了MonoRec,一种半监督的单目密集重建架构,该方案可在动态环境中根据单个移动摄像机预测深度图。MonoRec提出了一种新型的多阶段训练方案,该方案可以不需要LiDAR深度值的半监督损失公式。在KITTI数据集上仔细评估了MonoRec,并表明与多视图和单视图方法相比,它具有最先进的性能。通过在KITTI上训...

  • 深度Q学习原理及相关实例8. 深度Q学习8.1 经验回放8.2 目标网络8.3 相关算法8.4 训练算法8.5 深度Q学习实例8.5.1 主程序程序注释8.5.2 DQN模型构建程序程序注释8.5.3 程序测试8.6 双重深度Q网络8.7 对偶深度Q网络...

  • 缘起 现在很多小伙伴儿都从Ubuntu转到Deepin下面去了, Deepin这几年出了一些很不错的软件,比如深度截图, 深度影音, 深度音乐等等, Deepin基于Ubuntu开发, 它的软件大量使用QT4/5开发, 这也是我折腾QT的原因. 说明 在Ubuntu 14.04上python 2.7和python 3.4是可以共存的...

  • 教程简介 OpenCV 是计算机视觉中经典的专用库,然而其中文版官方教程久久不来。近日,一款最新 OpenCV4.1 版本的完整中文版官方教程出炉,读者朋友可以更好的学习了解 OpenCV 相关细节。教程来自 objectdetection.cn 。 教程目录 OpenCV 简介 0_OpenCV-Python Tutorials O...

  • 公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。IPM模型在解释自适应的IPM模型之前,首先需要了解使用相机的物理参数来描述IPM的基本模型[1](这篇...

  • 公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。前言前段时间刚分享的AVP-SLAM文章中有一个知识点叫做IPM(逆透视变换)AVP-SLAM:自动泊车...

  • 标题:The algorithm to generate color point-cloud with the registration between panoramic imageand laser point-cloud作者:Fanyang ZENG, Ruofei ZHONG 编译:点云PCL来源: https://iops...

  • 目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术 ,深度图像的边缘检测技术 ,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深度图像的多分辨率建模和几何压缩技术...

  • 点云PCL免费知识星球,点云论文速读。标题:三维点云分割综述(上)排版:particle欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐。这是一篇综述性论文,以下只做概述性介绍,介绍文章已共享在微信群和免费知识星球中,文章在公众号将分成三个部分:第一部分介绍点云的获取以及各种传感器获取点云的特性,以及分割概念的区别...

  • 点云PCL免费知识星球,点云论文速读。文章:DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots作者:Fernando Caballero1 and Luis Merino编译:点云PCL代码:https://githu...

  • CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能【1】。此外,由于大多数点云都是由地面激光扫描仪采集的,CloudCompare的目的是在一台标准笔记本电脑上处理大规模的点云——通常超过1000万个点云。...

  • 点云PCL免费知识星球,点云论文速读。文章:Open3DGen: Open-Source Software for Reconstructing Textured 3D Models from RGB-D Images作者:Teo T. Niemirepo, Marko Viitanen, and Jarno Vanne编译:点云P...

  • 点云PCL免费知识星球,点云论文速读。标题:Real-Time Spatio-Temporal LiDAR Point Cloud Compression作者:Yu Feng , Shaoshan Liu , and Yuhao Zhu来源:2020IROS本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF...