首页 > 初学Hadoop之图解MapReduce与WordCount示例分析

初学Hadoop之图解MapReduce与WordCount示例分析

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。
HDFS是Google File System(GFS)的开源实现,MapReduce是Google MapReduce的开源实现。
HDFS和MapReduce实现是完全分离的,并不是没有HDFS就不能MapReduce运算。
本文主要参考了以下三篇博客学习整理而成。
1、Hadoop示例程序WordCount详解及实例
2、hadoop 学习笔记:mapreduce框架详解
3、hadoop示例程序wordcount分析

1、MapReduce整体流程

最简单的MapReduce应用程序至少包含 3 个部分:一个 Map 函数、一个 Reduce 函数和一个 main 函数。在运行一个mapreduce计算任务时候,任务过程被分为两个阶段:map阶段和reduce阶段,每个阶段都是用键值对(key/value)作为输入(input)和输出(output)。main 函数将作业控制和文件输入/输出结合起来。
  • 并行读取文本中的内容,然后进行MapReduce操作。
  • Map过程:并行读取文本,对读取的单词进行map操作,每个词都以形式生成。

我的理解:

  一个有三行文本的文件进行MapReduce操作。

  读取第一行Hello World Bye World ,分割单词形成Map。

     

  读取第二行Hello Hadoop Bye Hadoop ,分割单词形成Map。

     

  读取第三行Bye Hadoop Hello Hadoop,分割单词形成Map。

     

  • Reduce操作是对map的结果进行排序,合并,最后得出词频。

我的理解:

  经过进一步处理(combiner),将形成的Map根据相同的key组合成value数组。

     

  循环执行Reduce(K,V[]),分别统计每个单词出现的次数。

     

2、WordCount源码

package org.apache.hadoop.examples;import java.io.IOException;
import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
/*** * 描述:WordCount explains by York* @author Hadoop Dev Group*/
publicclass WordCount {/*** 建立Mapper类TokenizerMapper继承自泛型类Mapper* Mapper类:实现了Map功能基类* Mapper接口:* WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。* Reporter 则可用于报告整个应用的运行进度,本例中未使用。 * */publicstaticclass TokenizerMapper extends Mapper{/*** IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,* 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为int,String 的替代品。* 声明one常量和word用于存放单词的变量*/privatefinalstatic IntWritable one =new IntWritable(1);private Text word =new Text();/*** Mapper中的map方法:* void map(K1 key, V1 value, Context context)* 映射一个单个的输入k/v对到一个中间的k/v对* 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。* Context:收集Mapper输出的对。* Context的write(k, v)方法:增加一个(k,v)对到context* 程序员主要编写Map和Reduce函数.这个Map函数使用StringTokenizer函数对字符串进行分隔,通过write方法把单词存入word中* write方法存入(单词,1)这样的二元组到context中*/  publicvoid map(Object key, Text value, Context context) throws IOException, InterruptedException {StringTokenizer itr =new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);}}}publicstaticclass IntSumReducer extends Reducer {private IntWritable result =new IntWritable();/*** Reducer类中的reduce方法:* void reduce(Text key, Iterable values, Context context)* 中k/v来自于map函数中的context,可能经过了进一步处理(combiner),同样通过context输出           */publicvoid reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {int sum =0;for (IntWritable val : values) {sum += val.get();}result.set(sum);context.write(key, result);}}publicstaticvoid main(String[] args) throws Exception {/*** Configuration:map/reduce的j配置类,向hadoop框架描述map-reduce执行的工作*/Configuration conf =new Configuration();String[] otherArgs =new GenericOptionsParser(conf, args).getRemainingArgs();if (otherArgs.length !=2) {System.err.println("Usage: wordcount  ");System.exit(2);}Job job =new Job(conf, "word count");    //设置一个用户定义的job名称job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);    //为job设置Mapper类job.setCombinerClass(IntSumReducer.class);    //为job设置Combiner类job.setReducerClass(IntSumReducer.class);    //为job设置Reducer类job.setOutputKeyClass(Text.class);        //为job的输出数据设置Key类job.setOutputValueClass(IntWritable.class);    //为job输出设置value类FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    //为job设置输入路径FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为job设置输出路径System.exit(job.waitForCompletion(true) ?0 : 1);        //运行job
  }
}

3、WordCount逐行解析

  • 对于map函数的方法。
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {…}

  这里有三个参数,前面两个Object key, Text value就是输入的key和value,第三个参数Context context这是可以记录输入的key和value,例如:context.write(word, one);此外context还会记录map运算的状态。

  • 对于reduce函数的方法。
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {…}

  reduce函数的输入也是一个key/value的形式,不过它的value是一个迭代器的形式Iterable values,也就是说reduce的输入是一个key对应一组的值的value,reduce也有context和map的context作用一致。

  至于计算的逻辑则需要程序员编码实现。

  • 对于main函数的调用。

  首先是:

Configuration conf = new Configuration();

  运行MapReduce程序前都要初始化Configuration,该类主要是读取MapReduce系统配置信息,这些信息包括hdfs还有MapReduce,也就是安装hadoop时候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件里的信息,有些童鞋不理解为啥要这么做,这个是没有深入思考MapReduce计算框架造成,我们程序员开发MapReduce时候只是在填空,在map函数和reduce函数里编写实际进行的业务逻辑,其它的工作都是交给MapReduce框架自己操作的,但是至少我们要告诉它怎么操作啊,比如hdfs在哪里,MapReduce的jobstracker在哪里,而这些信息就在conf包下的配置文件里。

  接下来的代码是:

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();if (otherArgs.length != 2) {System.err.println("Usage: wordcount  ");System.exit(2);}

  If的语句好理解,就是运行WordCount程序时候一定是两个参数,如果不是就会报错退出。至于第一句里的GenericOptionsParser类,它是用来解释常用hadoop命令,并根据需要为Configuration对象设置相应的值,其实平时开发里我们不太常用它,而是让类实现Tool接口,然后再main函数里使用ToolRunner运行程序,而ToolRunner内部会调用GenericOptionsParser。

  接下来的代码是:

    Job job = new Job(conf, "word count");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);

  第一行就是在构建一个job,在mapreduce框架里一个mapreduce任务也叫mapreduce作业也叫做一个mapreduce的job,而具体的map和reduce运算就是task了,这里我们构建一个job,构建时候有两个参数,一个是conf这个就不累述了,一个是这个job的名称。

  第二行就是装载程序员编写好的计算程序,例如我们的程序类名就是WordCount了。这里我要做下纠正,虽然我们编写mapreduce程序只需要实现map函数和reduce函数,但是实际开发我们要实现三个类,第三个类是为了配置mapreduce如何运行map和reduce函数,准确的说就是构建一个mapreduce能执行的job了,例如WordCount类。

  第三行和第五行就是装载map函数和reduce函数实现类了,这里多了个第四行,这个是装载Combiner类,这个类和mapreduce运行机制有关,其实本例去掉第四行也没有关系,但是使用了第四行理论上运行效率会更好。

  接下来的代码:

    job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);

  这个是定义输出的key/value的类型,也就是最终存储在hdfs上结果文件的key/value的类型。

  最后的代码是:

    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);

  第一行就是构建输入的数据文件,第二行是构建输出的数据文件,最后一行如果job运行成功了,我们的程序就会正常退出。

转载于:https://www.cnblogs.com/hehaiyang/p/4484442.html

更多相关:

  • 通过multibranch类型的pipeline job使得对于多个branch的支持更加简单。只需要创建一个multibranch job,jenkins将自动地为所有的branch创建job。   文章来自:http://www.ciandcd.com文中的代码来自可以从github下载: https://github.com/c...

  • 草色新雨中, 松声晚窗里。之前我们学习 Power Query 都是用鼠标就完成了很多复杂的操作。虽然 PowerQuery 已经将大部分常用功能内置成到功能区。基本能完成我们大部分的报表自动化功能。但是总有些复杂的或者个性化的问题是开发团队没有预先想到的,这时我们就需要学习 M 语言。一、M 语言在哪里?M语言的函数公式有三个地...

  • 前言从2020年3月份开始,计划写一系列文档--《小白从零开始学编程》,记录自己从0开始学习的一些东西。第一个系列:python,计划从安装、环境搭建、基本语法、到利用Django和Flask两个当前最热的web框架完成一个小的项目第二个系列:可能会选择Go语言,也可能会选择Vue.js。具体情况待定,拭目以待吧。。。基本概念表达式表...

  • 1.1函数1.1.1什么是函数函数就是程序实现模块化的基本单元,一般实现某一功能的集合。函数名:就相当于是程序代码集合的名称参数:就是函数运算时需要参与运算的值被称作为参数函数体:程序的某个功能,进行一系列的逻辑运算return 返回值:函数的返回值能表示函数的运行结果或运行状态。1.1.2函数的作用函数是组织好的,可重复使用的,用来...

  • 原标题:基于Python建立深度神经网络!你学会了嘛?图1 神经网络构造的例子(符号说明:上标[l]表示与第l层;上标(i)表示第i个例子;下标i表示矢量第i项)单层神经网络图2 单层神经网络示例神经元模型是先计算一个线性函数(z=Wx+b),接着再计算一个激活函数。一般来说,神经元模型的输出值是a=g(Wx+b),其中g是激活函数(...

  • 在学习MySQL的时候你会发现,它有非常多的函数,在学习的时候没有侧重。小编刚开始学习的时候也会有这个感觉。不过,经过一段时间的学习之后,小编发现尽管函数有很多,但是常用的却只有那几个。今天小编就把常用的函数汇总一下,为大家能够能好的学习MySQL中的函数。MySQL常使用的函数大概有四类。时间函数、数学函数、字符函数、控制函数。让我...

  • 原文出处: 韩昊    1 2 3 4 5 6 7 8 9 10 作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事   谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。   转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章...

  • 原文出处: 韩昊   我保证这篇文章和你以前看过的所有文章都不同,这是 2012 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维...

  • 很多Linux高手都喜欢使用screen命令,screen命令可以使你轻松地使用一个终端控制其他终端。尽管screen本身是一个非常有用的工具,byobu作为screen的增强版本,比screen更加好用而且美观,并且提供有用的信息和快捷的热键。 想象一下这样一个场景:你通过Secure Shell(ssh)链接到一个服务器,并...

  • NarrowbandPrimary Synchronization Signal时域位置每1个SFN存在一个NPSSSFNSubframeSymbol长度每个SFN5最后11个symbol11个symbols频域位置NB-IOT下行带宽固定180kHz,一个PRB,12个子载波。...

  •  [h1]反斜杠只能够阻止一个字符  [h2]位于键盘的左上角,和~公用一个键。...