图像的特征点可以简单的理解为图像中比较显著的点,如轮廓点,较暗区域中的亮点,较亮区域中的暗点等。
原图
轮廓线(可能的特征点)
ORB采用FAST(features from accelerated segment test)算法来检测特征点。FAST核心思想就是找出那些卓尔不群的点,即拿一个点跟它周围的点比较,如果它和其中大部分的点都不一样就可以认为它是一个特征点。
FAST特征点检测
备注:每个小方格代表一个像素,方格内的颜色只是为了便于区分,不代表该像素点的颜色。
图中红色的点为使用FAST算法找到的特征点。
得到特征点后我们需要以某种方式描述这些特征点的属性。这些属性的输出我们称之为该特征点的描述子(Feature Descritors).ORB采用BRIEF算法来计算一个特征点的描述子。BRIEF算法的核心思想是在关键点P的周围以一定模式选取N个点对,把这N个点对的比较结果组合起来作为描述子。
选取N个点对
1.以关键点P为圆心,以d为半径做圆O。
2.在圆O内某一模式选取N个点对。这里为方便说明,N=4,实际应用中N可以取512.
假设当前选取的4个点对如上图所示分别标记为:
3.定义操作T
4.分别对已选取的点对进行T操作,将得到的结果进行组合。
假如:
则最终的描述子为:1011
在现实生活中,我们从不同的距离,不同的方向、角度,不同的光照条件下观察一个物体时,物体的大小,形状,明暗都会有所不同。但我们的大脑依然可以判断它是同一件物体。理想的特征描述子应该具备这些性质。即,在大小、方向、明暗不同的图像中,同一特征点应具有足够相似的描述子,称之为描述子的可复现性(鲁棒性)。
当以某种理想的方式分别计算上图中红色点的描述子时,应该得出同样的结果。即描述子应该对光照(亮度)不敏感,具备尺度一致性(大小 ),旋转一致性(角度)等。
上面我们用BRIEF算法得到的描述子并不具备以上这些性质。因此我们得想办法改进我们的算法。ORB并没有解决尺度一致性问题,在OpenCV的ORB实现中采用了图像金字塔来改善这方面的性能。ORB主要解决BRIEF描述子不具备旋转不变性的问题。
回顾一下BRIEF描述子的计算过程:在当前关键点P周围以一定模式选取N个点对,组合这N个点对的T操作的结果就为最终的描述子。当我们选取点对的时候,是以当前关键点为原点,以水平方向为X轴,以垂直方向为Y轴建立坐标系。当图片发生旋转时,坐标系不变,同样的取点模式取出来的点却不一样,计算得到的描述子也不一样,这是不符合我们要求的。因此我们需要重新建立坐标系,使新的坐标系可以跟随图片的旋转而旋转。这样我们以相同的取点模式取出来的点将具有一致性。
打个比方,我有一个印章,上面刻着一些直线。用这个印章在一张图片上盖一个章子,图片上分处直线2头的点将被取出来。印章不变动的情况下,转动下图片,再盖一个章子,但这次取出来的点对就和之前的不一样。为了使两次取出来的点一样,我需要将章子也旋转同一个角度再盖章。(取点模式可以认为是章子上直线的分布情况)
ORB在计算BRIEF描述子时建立的坐标系是以关键点为圆心,以关键点和取点区域的质心的连线为X轴建立二维坐标系。
在图1中,P为关键点。圆内为取点区域,每个小格子代表一个像素。现在我们把这块圆心区域看做一块木板,木板上每个点的质量等于其对应的像素值。根据积分学的知识我们可以求出这个密度不均匀木板的质心Q。计算公式如下。其中R为圆的半径。
我们知道圆心是固定的而且随着物体的旋转而旋转。当我们以PQ作为坐标轴时(图2),在不同的旋转角度下,我们以同一取点模式取出来的点是一致的。这就解决了旋转一致性的问题。
ORB算法最大的特点就是计算速度快 。 这首先得益于使用FAST检测特征点,FAST的检测速度正如它的名字一样是出了名的快。再次是使用BRIEF算法计算描述子,该描述子特有的二进制串的表现形式不仅节约了存储空间,而且大大缩短了匹配的时间。
例如特征点A、B的描述子如下。
A:10101011
B:10101010
我们设定一个阈值,比如80%。当A和B的描述子的相似度大于90%时,我们判断A,B是相同的特征点,即这2个点匹配成功。在这个例子中A,B只有最后一位不同,相似度为87.5%,大于80%。则A和B是匹配的。
我们将A和B进行异或操作就可以轻松计算出A和B的相似度。而异或操作可以借组硬件完成,具有很高的效率,加快了匹配的速度。
特征点的匹配
本文只对ORB算法核心思想做一个解读。在具体的实现中还涉及到很多的细节及优化问题。了解更多的细节请参考下面一些资料。
http://download.csdn.NET/detail/yang843061497/7785917
http://www.cvchina.info/2011/07/04/whats-orb/
http://blog.sina.com.cn/s/blog_916b71bb0100w9al.html
作者:潘凌昀
链接:https://www.jianshu.com/p/9ee6b2145eaa
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
(1)关于点云的配准 1.首先给定源点云与目标点云。 2.提取特征确定对应点 3.估计匹配点对应的变换矩阵 4.应用变换矩阵到源点云到目标点云的变换 配准的流程图 通过特征点的匹配步骤 (1)计算源点云与目标点云的关键点 (2)计算关键点的特征描述子(比如:FPFH等等) (3)匹配特征点计算出对应关系 (4)从特征点之间的对应...
摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训练集-测试集 切分 4.spark新增SparkSession与Da...
1.1算法流程 假设有m个samples,每个数据有n维。 1. 计算各个feature的平均值,计μj ;(Xj(i)表示第i个样本的第j维特征的value) μj = Σm Xj(i)/m meanVals = mean(dataMat, axis=0) 2. 将每一个feature scaling:将在不同scale上的f...
本文出处:http://blog.csdn.net/xizhibei ============================= PCA,也就是PrincipalComponents Analysis,主成份分析,是个非常优秀的算法,依照书上的说法: 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征...
文章目录前言函数描述代码实例TCP服务器为什么调用listen 前言 根据TCP编程模型中我们可以看到之前的socket和bind接口是tcp服务器在为接收客户端的链接做准备,保证tcp的面向字节流,面向连接的可靠通信服务正常进行。接下来的listen端口则为我们进行三次握手与客户端进行链接的接口。 TCP编程模型如下...
文章目录前言close函数介绍shutdown函数介绍 前言 这里在主要通过实例进行描述close函数在网络编程中的使用 TCP编程模型中客户端或者服务器只要主动通过close发起断开连接的请求,则通信连接可以中断。 可以通过在主进程中抓取通信端的断开信号,比如SIGINT,在信号处理函数中对该通信文件描述符进行关闭。...
一.内存管理基本知识 1.S3C2440最多会用到两级页表:以段的方式进行转换时只用到一级页表,以页的方式进行转换时用到两级页表。页的大小有三种:大页(64KB),小页(4KB),极小页(1KB)。条目也称为"描述符",有:段描述符,大页描述符,小页描述符,极小页描述符——他们保存大页,小页,极小页的起始物理地址;粗页表描述符,细页表...
英语的重要性,毋庸置疑!尤其对广大职场人士,掌握英语意味着就多了一项竞争的技能。那,对于我们成人来说,时间是最宝贵的。如何短时间内在英语方面有所突破,这是我们最关心的事情。英语学习,到底有没有捷径可以走,是否可以速成?周老师在这里明确告诉大家,英语学习,没有绝对的捷径走,但是可以少走弯路。十多年的教学经验告诉我们,成功的学习方法可以借...
展开全部 其实IDLE提供了一个显32313133353236313431303231363533e78988e69d8331333365663438示所有行和所有字符的功能。 我们打开IDLE shell或者IDLE编辑器,可以看到左下角有个Ln和Col,事实上,Ln是当前光标所在行,Col是当前光标所在列。 我们如果想得到文件代码...
前言[1]从 Main 方法说起[2]走进 Tomcat 内部[3]总结[4]《Java 2019 超神之路》《Dubbo 实现原理与源码解析 —— 精品合集》《Spring 实现原理与源码解析 —— 精品合集》《MyBatis 实现原理与源码解析 —— 精品合集》《Spring MVC 实现原理与源码解析 —— 精品合集》《Spri...
【本文摘要】【注】本文所述内容为学习Yjango《学习观》相关视频之后的总结,观点归Yjango所有,本文仅作为学习之用。阅读本节,会让你对英语这类运动类知识的学习豁然开朗,你会知道英语学习方面,我们的症结所在。学习英语这类运动类知识,需要把握四个原则第一,不要用主动意识。第二,关注于端对端第三,输入输出符合实际情况第四,通过多个例子...
点云PCL免费知识星球,点云论文速读。文章:RGB-D SLAM with Structural Regularities作者:Yanyan Li , Raza Yunus , Nikolas Brasch , Nassir Navab and Federico Tombari编译:点云PCL代码:https://github.co...