首页 > 实时的激光雷达点云压缩

实时的激光雷达点云压缩

点云PCL免费知识星球,点云论文速读。

标题:Real-Time Spatio-Temporal LiDAR Point Cloud Compression

作者:Yu Feng , Shaoshan Liu , and Yuhao Zhu

来源:2020IROS

本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。

论文阅读模块将分享点云处理,SLAM,三维视觉,高精地图相关的文章。公众号致力于理解三维视觉领域相关内容的干货分享,欢迎各位加入我,我们一起每天一篇文章阅读,开启分享之旅,有兴趣的可联系微信[email protected]

论文摘要

实时压缩大量的激光雷达点云对于自动驾驶汽车等自动化机器至关重要。虽然目前大多数的工作都集中在压缩单个点云帧上,但是本文提出了一个新的系统,可以有效地压缩一系列点云。利用点云帧序列中的空间和时间冗余的思想。首先在点云序列中识别关键帧,然后通过迭代平面拟合对关键帧进行空间编码。然后我们利用连续点云在物理空间中有大量重叠的事实,因此空间编码的数据可以(重新)用于对时间流进行编码。利用空间编码数据进行时间编码,不仅提高了压缩率,而且避免了冗余计算,大大提高了压缩速度。实验表明,我们的压缩系统达到了40×90的压缩率,明显高于MPEG的LiDAR点云压缩标准,同时保持了较高的端到端应用精度。同时,我们的压缩系统的压缩速度与目前激光雷达的点云生成速率相匹配,并优于现有的压缩系统,实现了实时点云传输。

代码开源(有兴趣的可以测试后与我交流和分享):

https://github.com/horizon-research/Real-Time-Spatio-Temporal-LiDAR-Point-Cloud-Compression

内容介绍

本文的压缩系统的思想是利用点云(空间)和点云(时间)之间的冗余。在空间上,现实世界中的许多曲面都是平面(例如墙和地面);甚至非平面曲面也可以用一组平面来近似。在时间上,连续的点云共享场景的大部分重叠区域;因此,可以使用同一组平面来编码跨越点云的点。虽然直观,但由于不规则/非结构化点云和计算密集的平面拟合过程,实时利用空间和时间冗余具有挑战性。我们提出了一个压缩系统,在保持高应用精度的同时,实现了最先进的压缩率和压缩速度。

本文的主要贡献如下:

•据我们所知,这是第一次利用空间和时间冗余压缩激光雷达点云的工作。

•与当今的压缩方法(包括MPEG的点云压缩标准)相比,压缩方法同时实现了更高的压缩率、更高的压缩速度和更高的应用程序级精度。

我们的压缩系统概述,它压缩一系列连续的点云。将所有点云转换为距离图像,以加快压缩速度。我们首先对序列中的关键点云(K帧)进行空间编码,通常是中间点云。然后使用K帧的空间编码结果对其余的点云进行时间编码,我们称之为预测点云(P帧)。

文章中提到了关于非结构化的点云编码,常用的方法是空间树结构的方法,比如八叉树就是应用十分广泛的编码方式。那么对于结构化的点云压缩与非结构化使用空间树的方式来编码点云不同,结构化的点云可以转换为图像编码的形式,然后利用常规的图像压缩的方法实现点云的压缩。

每个点云被转换成一个距离图像,以便进行后续计算。距离图像不仅对原始点云进行初始压缩,而且提供了非结构化点云的结构化表示。然后我们通过拟合平面对K帧进行空间编码;然后利用K帧中的拟合平面对P帧进行时间编码,大大提高了整体压缩速率和速度。为了对IMU观测中可能引入的变换误差具有鲁棒性,我们提出了一套补偿传感器噪声并保持编码质量的技术。最后,在我们的压缩中使用不同的数据结构。原始点云将转换为距离图像。经过空间编码后,距离图中的大部分片段都是平面编码的,不合格的区域留在残差图中。(如图)

距离转换公式

空间编码示例

在运动变换之前和之后五个连续的点云的结果

评估指标

论文在三种常见的点云应用程序上评估了这种点云压缩方法:点云配准,点云对象检测,点云场景的分割。

  • 点云配准:配准的测试使用了基于点云PCL库的ICP算法进行对比测试。

  • 点云目标检测:使用了体素网格的深度学习的方法测试对比。

  • 点云场景的分割:使用了基于DNN的squezeseg方法。

使用三个评估指标:未压缩点云的压缩率、FPS的压缩速度和应用程序结果的精确度。评估压缩如何影响点云应用结果,这才是最终的关键。所以这里数据集使用KITTI数据集来评估点云配准和点云对象检测。为了评估点云分割,使用SemanticKITTI数据集。

硬件平台:使用英特尔I5-7500与,和一个移动平台配备Nvidia Jethon Tx2使用C++实现点云的压缩。

不同压缩方法的配准平移误差和压缩率比较 

比较了各种压缩方法的目标检测精度和压缩率

各种压缩方法的分割误差和压缩率比较

总结

本文提出了一种新的时空压缩方法。结果表明,利用连续点云的空间和时间冗余,我们的压缩方法可以达到90倍的压缩率,在保持较高的应用精度的同时实现了实时(>10fps)的压缩速度。它在压缩率、速度和准确度方面优于最先进的点云压缩标准。

资源

三维点云论文及相关应用分享

【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法

3D目标检测:MV3D-Net

三维点云分割综述(上)

3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)

win下使用QT添加VTK插件实现点云可视化GUI

JSNet:3D点云的联合实例和语义分割

大场景三维点云的语义分割综述

PCL中outofcore模块---基于核外八叉树的大规模点云的显示

基于局部凹凸性进行目标分割

基于三维卷积神经网络的点云标记

点云的超体素(SuperVoxel)

基于超点图的大规模点云分割

更多文章可查看:点云学习历史文章大汇总

SLAM及AR相关分享

【开源方案共享】ORB-SLAM3开源啦!

【论文速读】AVP-SLAM:自动泊车系统中的语义SLAM

【点云论文速读】StructSLAM:结构化线特征SLAM

SLAM和AR综述

常用的3D深度相机

AR设备单目视觉惯导SLAM算法综述与评价

SLAM综述(4)激光与视觉融合SLAM

Kimera实时重建的语义SLAM系统

SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM

易扩展的SLAM框架-OpenVSLAM

高翔:非结构化道路激光SLAM中的挑战

SLAM综述之Lidar SLAM

基于鱼眼相机的SLAM方法介绍

往期线上分享录播汇总

第一期B站录播之三维模型检索技术

第二期B站录播之深度学习在3D场景中的应用

第三期B站录播之CMake进阶学习

第四期B站录播之点云物体及六自由度姿态估计

第五期B站录播之点云深度学习语义分割拓展

第六期B站录播之Pointnetlk解读

[线上分享录播]点云配准概述及其在激光SLAM中的应用

[线上分享录播]cloudcompare插件开发

[线上分享录播]基于点云数据的 Mesh重建与处理

[线上分享录播]机器人力反馈遥操作技术及机器人视觉分享

[线上分享录播]地面点云配准与机载点云航带平差

点云PCL更多活动请查看:点云PCL活动之应届生校招群

扫描下方微信视频号二维码可查看最新研究成果及相关开源方案的演示:

如果你对本文感兴趣,点击“原文阅读”获取知识星球二维码,务必按照“姓名+学校/公司+研究方向”备注加入免费知识星球,星球可自由发言交流和分享。也可免费下载公众号分享的论文pdf文档,和更多热爱分享的小伙伴一起交流吧!

欢迎各位转发分享朋友圈,将公众号设置为星标,或点击“在看”以示鼓励和支持,让我们继续分享!

以上内容如有错误请留言评论,欢迎指正交流。如有侵权,请联系删除

扫描二维码

                   关注我们

让我们一起分享一起学习吧!期待有想法,乐于分享的小伙伴加入免费星球注入爱分享的新鲜活力。分享的主题包含但不限于三维视觉,点云,高精地图,自动驾驶,以及机器人等相关的领域。

分享及合作方式:可联系微信“920177957”(需要按要求备注)联系邮箱:[email protected],欢迎企业来联系公众号展开合作。

点一下“在看”你会更好看耶

更多相关:

  • 点云PCL免费知识星球,点云论文速读。标题:三维点云分割综述(上)排版:particle欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐。这是一篇综述性论文,以下只做概述性介绍,介绍文章已共享在微信群和免费知识星球中,文章在公众号将分成三个部分:第一部分介绍点云的获取以及各种传感器获取点云的特性,以及分割概念的区别...

  • 点云PCL免费知识星球,点云论文速读。文章:DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots作者:Fernando Caballero1 and Luis Merino编译:点云PCL代码:https://githu...

  • CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能【1】。此外,由于大多数点云都是由地面激光扫描仪采集的,CloudCompare的目的是在一台标准笔记本电脑上处理大规模的点云——通常超过1000万个点云。...

  • 点云PCL免费知识星球,点云论文速读。文章:Open3DGen: Open-Source Software for Reconstructing Textured 3D Models from RGB-D Images作者:Teo T. Niemirepo, Marko Viitanen, and Jarno Vanne编译:点云P...

  •     第一步,用Xshelll/Xftp连接远程服务器 第二步,cd /路径/路径,如果路径名称记不住可以搭配Tab键 第三步,找到对应目录后,可以用ll或者ls来查看当前目录结构 第四步,上传本地更新包 先安装上传命令yum install lrzsz -y 然后rz -y,该命令是强制覆盖服务器同名文件(慎重使用-y,...

  • 文章目录0 前言1 核心问题1.1 引擎的各方面性能受限于数据结构的选择1.2 压缩功能 导致的CPU瓶颈1.3 Crash-safe 崩溃异常的无奈选择1.4 当前主流 加速硬件 较难满足存储性能提升的要求2 XDP 设计原则2.1 数据结构上的优化2.2 解决 压缩引入的CPU消耗2.3 异常恢复的设计2.4 易于集成3 XDP...

  • 现代的浏览器IE6和Firefox都支持客户端Gzip,也就是说,在服务器上的网页,传输之前,先使用Gzip压缩再传 输给客户端,客户端接收之后由浏览器解压显示,这样虽然稍微占用了一些服务器和客户端的CPU,但是换来的是更高的带宽利用率。对于纯文本来讲,压缩率是 相当可观的。如果每个用户节约50%的带宽,那么你租用来的那点带宽就可以服...

  • 标题:Voxelized GICP for Fast and Accurate 3D Point Cloud Registration作者:Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno来源:分享者代码:https://github.com/SMRT-AI...

  • 点云PCL免费知识星球,点云论文速读。标题:LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking作者:Xingxing Zuo1;2, Yulin Yang3, Patrick Geneva3, Jiajun...

  • 点云PCL免费知识星球,点云论文速读。标题:CMRNet++: Map and Camera Agnostic Monocular Visual Localization in LiDAR Maps作者:Daniele Cattaneo, Domenico Giorgio Sorrenti, Abhinav Valada来源:分享者...

  • 点云PCL免费知识星球,点云论文速读。标题:LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping作者:Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and...

  • 前言CloudCompare是另一款开源且完善的点云处理软件,我们可以在这款软件的基础上,任意的设计成我们想要的界面,可以说是点云处理软件的最佳选择,所以我认为如果你是研究点云算法的可以使用PCL,GDAL,等其他库,如果你是做工程的需要点云的界面显示,那么cloudCompare就是不二选择,当然如果是简单的界面使用PCL和QT也...