首页 > 层化(stratification)的方法

层化(stratification)的方法

有时候我们会遇到调整后的模型反而不如调整前表现好的情况,这可能和数据的随机分割有关系。在这个不平衡的数据情况下,最好用层化(stratification)的方法,比如:

from sklearn.cross_validation import StratifiedShuffleSplit



...

ssscv = StratifiedShuffleSplit( y_train, n_iter=10, test_size=0.1)

grid = GridSearchCV(clf, parameters, cv = ssscv , scoring=f1_scorer)

grid.fit( X_train, y_train )

...

转载于:https://www.cnblogs.com/bettyty/p/6357907.html

更多相关:

  • 0.随机森林的思考   随机森林的决策树是分别采样建立的,各个决策树之间是相对独立的。那么,在我们得到了第k-1棵决策树之后,能否通过现有的样本和决策树的信息, 对第m颗树的建立产生有益的影响呢?在随机森林建立之后,采用的投票过程能否增加一定的权值呢?在选取样本的时候,我们能否对于分类错误的样本给予更大的权值,使之得到更多的重视呢?...

  • 如果想在训练和验证时监视不同的summary,将train summary ops和val summary ops放进不同的集合中即可。 train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph) val_writer = tf.summary.FileWr...

  • 以4-fold validation training为例 (1) 给定数据集data和标签集label 样本个数为 sampNum = len(data) (2) 将给定的所有examples分为10组 每个fold个数为 foldNum = sampNum/10 (3) 将给定的所有examples分为10组 参考...

  • 本文是西门子开放式TCP通信的第2篇,上一篇我们讲了使用西门子1200PLC作为TCP服务器的程序编写,可以点击下方链接阅读:【公众号dotNet工控上位机:thinger_swj】基于Socket访问西门子PLC系列教程(一)在完成上述步骤后,接下来就是编写上位机软件与PLC之间进行通信。上位机UI界面设计如下图所示:从上图可以看出...

  • 我有一个大型数据集,列出了在全国不同地区销售的竞争对手产品。我希望通过使用这些新数据帧名称中的列值的迭代过程,根据区域将该数据帧分成几个其他区域,以便我可以分别处理每个数据帧-例如根据价格对每个地区的信息进行排序,以了解每个地区的市场情况。我给出了以下数据的简化版本:Competitor Region ProductA Product...

  • 作为一名IT从业者,我来回答一下这个问题。首先,对于具有Java编程基础的人来说,学习Python的初期并不会遇到太大的障碍,但是要结合自己的发展规划来制定学习规划,尤其要重视学习方向的选择。Java与Python都是比较典型的全场景编程语言,相比于Java语言来说,当前Python语言在大数据、人工智能领域的应用更为广泛一些,而且大...

  • 这段时间通过学习相关的知识,最大的变化就是看待事物更加喜欢去了解事物后面的本质,碰到问题后解决问题思路也发生了改变。举个具体的例子,我在学习数据分析,将来会考虑从事这方面的工作,需要掌握的相关专业知识这个问题暂且按下不表,那哪些具体的问题是我需要了解的呢,以下简单罗列:1、了解数据分析师这个岗位在各个地区的需求情况?2、数据分析师的薪...

  • 这一节将开始学习python的一个核心数据分析支持库---pandas,它是python数据分析实践与实战的必备高级工具。对于使用 Python 进行数据分析来说,pandas 几乎是无人不知,无人不晓的。今天,我们就来认识认识数据分析界鼎鼎大名的 pandas。目录一. pandas主要数据结构 SeriesDataFrame二...