首页 > SLAM综述(4)激光与视觉融合SLAM

SLAM综述(4)激光与视觉融合SLAM

分享

SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。

本系列文章主要分成四个部分:

在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。

第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。

第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以及未来。

第四部分中,将介绍激光雷达与视觉的融合。

激光雷达和视觉SLAM系统 说到激光雷达和视觉SLAM系统,必不可少的是两者之间的标定工作。

多传感器校准

Camera&IMU:Kalibr[1]是一个工具箱,解决了以下几种传感器的校准:

多摄像机校准。

视觉惯性校准(Camera IMU)。

卷帘快门式摄像机校准。

Vins融合了视觉与IMU,具有在线空间校准和在线时间校准的功能。

MSCKF-VIO具有摄像机和IMU的校准功能。

mc-VINS[2]可以校准所有多个摄像机和IMU之间的外部参数和时间偏移。

IMU-TK[3][4]还可以对IMU的内部参数进行校准。

论文[5]提出了一种用于单目VIO的端到端网络,融合了来自摄像机和IMU的数据。

更多相关:

  • 公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。资源三维点云论文及相关应用分享【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法3D目标检测...

  • Thanks to LOAM, A-LOAM, and LIO-SAM code authors. The major codes in this repository are borrowed from their efforts.代码:https://github.com/gisbi-kim/SC-A-LOAM编译:点云PCL本...

  • 文章:Inertial-Only Optimization for Visual-Inertial Initialization作者:Carlos Campos, Jose M.M. Montiel and Juan D. Tard ´ os´代码:https://github.com/bxh1/VIDO-SLAM.git编译:点云...

  • 点云PCL免费知识星球,点云论文速读。文章:Monocular Object and Plane SLAM in Structured Environments作者:Shichao Yang, Sebastian Scherer翻译:particle本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF论文,欢...

  • 点云PCL免费知识星球,点云论文速读。文章:Persistent Map Saving for Visual Localization for Autonomous Vehicles: An ORB-SLAM 2 Extension作者:Felix Nobis∗, Odysseas Papanikolaou, Johannes Be...