6-12 二叉搜索树的操作集(30 分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{ElementType Data;BinTree Left;BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include
#include typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{ElementType Data;BinTree Left;BinTree Right;
};void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );int main()
{BinTree BST, MinP, MaxP, Tmp;ElementType X;int N, i;BST = NULL;scanf("%d", &N);for ( i=0; iData);if (Tmp==MinP) printf("%d is the smallest key
", Tmp->Data);if (Tmp==MaxP) printf("%d is the largest key
", Tmp->Data);}}scanf("%d", &N);for( i=0; i
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9 6 is found 3 is not found 10 is found 10 is the largest key 0 is found 0 is the smallest key 5 is found Not Found Inorder: 1 2 4 6 8 9
思路:二叉搜索树忘了?,看完之后曾国强不想用递归。
BinTree Insert(BinTree BST, ElementType X) {if (BST == NULL){BST = (BinTree)malloc(sizeof(struct TNode));BST->Data = X;BST->Left = NULL;BST->Right = NULL;return BST;}BinTree bin = BST;while (bin){if (X < bin->Data){if (bin->Left == NULL){bin->Left = (BinTree)malloc(sizeof(struct TNode));bin->Left->Data = X;bin->Left->Left = NULL;bin->Left->Right = NULL;break;}else bin = bin->Left;}else if (bin->Data < X) {if (bin->Right == NULL){bin->Right = (BinTree)malloc(sizeof(struct TNode));bin->Right->Data = X;bin->Right->Left = NULL;bin->Right->Right = NULL;break;}else bin = bin->Right; }}return BST; } BinTree Delete(BinTree BST, ElementType X) {if (!BST) printf("Not Found ");else{if (X < BST->Data)BST->Left = Delete(BST->Left, X);else if (X>BST->Data)BST->Right = Delete(BST->Right, X);else{if (BST->Left&&BST->Right){Position pos = FindMin(BST->Right);BST->Data = pos->Data;BST->Right = Delete(BST->Right, BST->Data);}else if (!BST->Left){Position pos = BST;BST = BST->Right;free(pos);}else if (!BST->Right){Position pos = BST;BST = BST->Left;free(pos);}}}return BST; } Position Find(BinTree BST, ElementType X) {if (!BST)return BST;Position pos = BST;while (pos){if (pos->Data == X)return pos;if (pos->Data > X){if (pos->Left == NULL)return pos->Left;else pos = pos->Left;}if (pos->Data < X){if (pos->Right == NULL)return pos->Right;else pos = pos->Right;}} } Position FindMin(BinTree BST) {if (!BST)return BST;Position pos = BST;while (pos->Left)pos = pos->Left;return pos; } Position FindMax(BinTree BST) {if (!BST)return BST;Position pos = BST;while (pos->Right)pos = pos->Right;return pos; }