下面给出一些比较高级的例子:
注意:
代码中需要保存运行结果图, 需要事先在当前源码目录下创建一个figure文件夹来存放图片.
一.数学图形
#!/usr/bin/env python
#encoding: utf-8#numpy is accessible via 'np' alias
from pylab import *figure(figsize=(8,5), dpi=80)subplot(111)X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C,S = np.cos(X), np.sin(X)plot(X, C, color="blue", linewidth=2.5, linestyle='-', label='cosine')
plot(X, S, color="red", linewidth=2.5, linestyle='-', label='sine')ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))xlim(X.min()*1.1, X.max()*1.1)
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-pi$', r'$-pi/2$', r'$0$', r'$+pi/2$', r'$+pi$'])
ylim(C.min()*1.1, C.max()*1.1)
yticks([-1, 0, +1], [r'$-1$', r'$0$', r'$+1$'])t = 2*np.pi/3
plot([t,t], [0,np.cos(t)], color='blue', linewidth=1.5, linestyle='--')
scatter([t,], [np.cos(t),], 50, color='blue')
annotate(r'$sin(frac{2pi}{3})=frac{sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30),textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle='arc3, rad=.2'))plot([t,t], [0,np.sin(t)], color='red', linewidth=1.5, linestyle='--')
scatter([t,], [np.sin(t),], 50, color='red')
annotate(r'$cos(frac{2pi}{3})=frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50),textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle='arc3, rad=.2'))legend(loc='upper left');for label in ax.get_xticklabels() + ax.get_yticklabels():label.set_fontsize(16)label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65))#must create dir in advance
savefig("figure/exercise_10.png", dpi=72)show()
二.散点图(scatter plots)
#!/usr/bin/env python
#encoding: utf-8from pylab import *n = 1024
X = np.random.normal(0, 1, n)
Y = np.random.normal(0, 1, n)
T = np.arctan2(Y, X)axes([0.025, 0.025, 0.95, 0.95])
scatter(X, Y, s=75, c=T, alpha=.5)xlim(-1.5, 1.5), xticks([])
ylim(-1.5, 1.5), yticks([])savefig('figure/scatter_ex.png', dpi=48)
show()
三.等高线图(contour plots)
#!/usr/bin/env python
#encoding: utf-8from pylab import *def f(x, y):return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X, Y = np.meshgrid(x, y)axes([0.025, 0.025, 0.95, 0.95])contourf(X, Y, f(X,Y), 8, alpha=.75, cmap=cm.hot)
C = contour(X, Y, f(X,Y), 8, colors='black', linewidth=.5)
clabel(C, inline=1, fontsize=10)xticks([])
yticks([])savefig('figure/contour_ex.png', dpi=48)
show()
四.饼图(Pie charts)
#!/usr/bin/env python
#encoding: utf-8from pylab import *n = 20
Z = np.ones(n)
Z[-1] *= 2axes([0.025, 0.025, 0.95, 0.95])
pie(Z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
gca().set_aspect('equal')
xticks([])
yticks([])savefig('figure/pie_ex.png', dpi=48)
show()
五.极轴图
#!/usr/bin/env python
#encoding: utf-8from pylab import *ax = axes([0.025, 0.025, 0.95, 0.95], polar=True)N = 20
theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = bar(theta, radii, width=width, bottom=0.0)for r,bar in zip(radii, bars):bar.set_facecolor( cm.jet(r/10.))bar.set_alpha(0.5)ax.set_xticklabels([])
ax.set_yticklabels([])savefig('figure/polar_ex.png', dpi=48)
show()
六.三维绘图
#!/usr/bin/env python
#encoding: utf-8from pylab import *
from mpl_toolkits.mplot3d import Axes3Dfig = figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=cm.hot)
ax.set_zlim(-2, 2)savefig('figure/plot3d_ex.png', dpi=48)
show()
七.数学公式
#!/usr/bin/env python
#encoding: utf-8from pylab import *eqs = []
eqs.append(r"$W^{3eta}_{delta_1
ho_1 sigma_2} = U^{3eta}_{delta_1
ho_1} + frac{1}{8 pi 2}int^{alpha_2}_{alpha_2} d alpha^prime_2 left[frac{ U^{2eta}_{delta_1
ho_1} - alpha^prime_2U^{1eta}_{
ho_1sigma_2} }{U^{0eta}_{
ho_1 sigma_2}}
ight]$")
eqs.append(r"$frac{d
ho}{d t} +
ho vec{v}cdot
ablavec{v} = -
abla p + mu
abla^2 vec{v} +
ho vec{g}$")
eqs.append(r"$int_{-infty}^infty e^{-x^2}}dx=sqrt{pi}$")
eqs.append(r"$E = mc^2 = sqrt{ {m_0}^2c^4 + p^2c^2}$")
eqs.append((r"$F_G = Gfrac{m_1m_2}{r^2}$"))axes([0.025, 0.025, 0.95, 0.95])for i in range(24):index = np.random.randint(0, len(eqs))eq = eqs[index]size = np.random.uniform(12, 32)x, y = np.random.uniform(0, 1, 2)alpha = np.random.uniform(0.25, 0.75)text(x, y, eq, ha='center', va='center', color='#11557c', alpha=alpha, transform=gca().transAxes, fontsize=size,clip_on=True)xticks([])
yticks([])savefig('figure/text_ex.png', dpi=48)
show()
参考文献
[1].http://reverland.org/python/2012/09/07/matplotlib-tutorial/