为什么出题人这么毒瘤啊??!!一个分块还要带log的题非要出成n<=2*1e5。。。。。。。
为了卡过最后两个点我做了无数常数优化,包括但不限于:把所有线段树改成 存差分的树状数组;把树剖求LCA的极小的log优化成rmq O(1)求LCA;根据测试情况手动调整siz的大小;
但就是死也卡不过去,算了算了QWQ
(常规套路,先把1设成根建有根树)
这个题的主要思路就是 对节点的下标分块,设 f[i][j] 为 第i个块内所有点到点j的距离和,然后看如何快速的动态维护这个玩意。。。。
发现改动一条边权的时候,只有两个点分别位于这条边两侧的时候才会对它们之间的dis有影响。
我们设p为边端点中更深的那个,那么也就是一个在p子树内,一个在子树外的才有影响。。。。
于是我们对每个块开一个vector记录一下这个块内的点的dfs序集合,排完序之后就可以之间O(log)的查询某个块在一棵子树内/外的点数了。。。
因为f[][]的第一维比较小,所以我们可以暴力枚举第一维,然后对第二维进行快速的修改。。。。。这时候发现第二维如果是存dfs序的话会更加方便(子树内可以直接进行区间修改),所以就改成下标代表dfs序啦。。。
对于整块整块的一些点到某个点的距离,用上述方法就行啦。。。可以发现都是区间修改单点查询,所以用差分的树状数组可以快(可能还不止)4倍常数哦。。。
查询零散的点对(i,j)之间的距离的话更加简单。。可以动态维护dis[i]表示i到根的距离(发现也是区间修改单点查询,所以可以类似上述整块的方法处理),答案就是dis[i]+dis[j]-2*dis[LCA(i,j)]。。。
可能说起来不是很多吧qwq?但是要写一辈子啊QWQWQWQ。。。。
(我美好的下午就这么没了QWQ)
话说我把树剖求LCA改成rmq之后反而更慢了QWQ,这是什么鬼啊。。。。
/*inside : b * dertaoutside : a * dertaall -> a * dertainside -> (b-a) * derta
*/
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
#define pb push_back
const int maxn=200003,N=205;inline int read(){int x=0; char ch=getchar();for(;!isdigit(ch);ch=getchar());for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';return x;
}void W(ll x){ if(x>=10) W(x/10); putchar(x%10+'0');}int n,m,T,dep[maxn],siz[maxn],cl[maxn];
int F[maxn],dc,dfn[maxn],dy[maxn],son[maxn];
int bl[maxn],num,val[maxn*2],uu,vv,ww;
int hd[maxn],ne[maxn*2],to[maxn*2];
ll ans=0,f[N][maxn];
vector id[N];
char s[10];void add(const int &x,const int &y,const int &z){to[++num]=y,ne[num]=hd[x],hd[x]=num,val[num]=z;
}void update(const int &T,int x,const int &y){ for(;x<=n;x+=x&-x) f[T][x]+=(ll)y;}
ll query(const int &T,int x){ ll an=0; for(;x;x-=x&-x) an+=(ll)f[T][x]; return an;}void Fdfs(int x,int fa){F[x]=fa,siz[x]=1;for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){dep[to[i]]=dep[x]+1,Fdfs(to[i],x),siz[x]+=siz[to[i]];if(!son[x]||siz[to[i]]>siz[son[x]]) son[x]=to[i];}
}void Sdfs(int x,int tp){dfn[x]=++dc,dy[dc]=x,cl[x]=tp;if(!son[x]) return;Sdfs(son[x],tp);for(int i=hd[x];i;i=ne[i])if(to[i]!=F[x]&&to[i]!=son[x]) Sdfs(to[i],to[i]);
}inline int LCA(int a,int b){while(cl[a]!=cl[b]){if(dep[cl[a]]>dep[cl[b]]) a=F[cl[a]];else b=F[cl[b]];}return dep[a]>dep[b]?b:a;
}inline int Get(int T,int x){return upper_bound(id[T].begin(),id[T].end(),x)-id[T].begin();
}inline void Maintain(int o,int derta){int p=to[o*2-1];if(dep[p]