首页 > MonoRec:无需激光雷达,只需单个相机就可以实现三维场景的稠密重建

MonoRec:无需激光雷达,只需单个相机就可以实现三维场景的稠密重建

摘要

在本文中,我们提出了MonoRec,一种半监督的单目密集重建架构,该方案可在动态环境中根据单个移动摄像机预测深度图。MonoRec提出了一种新型的多阶段训练方案,该方案可以不需要LiDAR深度值的半监督损失公式。在KITTI数据集上仔细评估了MonoRec,并表明与多视图和单视图方法相比,它具有最先进的性能。通过在KITTI上训练的模型,我们进一步证明了MonoRec能够很好地推广到牛津RobotCar数据集和手持摄像机记录的更具挑战性的TUM-Mono数据集上

相关工作与主要贡献

多视图立体视觉(MVS)方法基于具有已知姿势的一组图像来估计3D环境的稠密点云。在过去的几年中,基于经典的优化方法已经开发出很多种方案来解决MVS问题。

基于单目的深度预测仅依赖于单个图像,单目深度预测通常在训练期间仍然消耗视频序列或立体图像。它的目的是解决与本文提出的类似的问题,即对包括静态和动态对象的3D场景进行稠密点云重构。

为了结合具有深度的MVS和单目深度预测的优势,我们提出了MonoRec,这是一种新颖的单目密集重建架构,由MaskModule和DepthModule组成。使用成本量对来自多个连续图像的信息进行编码,这些成本量是基于结构相似性指标度量(SSIM)而不是像以前的工作一样基于绝对差之和(SAD)构建的。MaskModule能够识别运动像素并降低成本量中的相应体素。因此,与其他MVS方法相比,MonoRec不受移动物体上的伪影的影响,因此可提供静态和动态物体的准确深度估计。与KITTI数据集上的其他MVS和单目深度预测方法相比,通过提出的多阶段训练方案,MonoRec可以实现最先进的性能。下图显示了该方法生成的密集点云

更多相关:

  • 点云PCL免费知识星球,点云论文速读。文章:TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo作者:Lukas Koestler Nan Yang y Niclas Zeller Daniel Cremers编译:点云PCL代码:h...

  • (1)点云到深度图与可视化的实现   区分点云与深度图本质的区别 1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。 2.点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。若将激光束...

  • 深度Q学习原理及相关实例8. 深度Q学习8.1 经验回放8.2 目标网络8.3 相关算法8.4 训练算法8.5 深度Q学习实例8.5.1 主程序程序注释8.5.2 DQN模型构建程序程序注释8.5.3 程序测试8.6 双重深度Q网络8.7 对偶深度Q网络...

  • 缘起 现在很多小伙伴儿都从Ubuntu转到Deepin下面去了, Deepin这几年出了一些很不错的软件,比如深度截图, 深度影音, 深度音乐等等, Deepin基于Ubuntu开发, 它的软件大量使用QT4/5开发, 这也是我折腾QT的原因. 说明 在Ubuntu 14.04上python 2.7和python 3.4是可以共存的...

  • 来源:公众号|计算机视觉工坊(系投稿)作者:仲夏夜之星「3D视觉工坊」技术交流群已经成立,目前大约有12000人,方向主要涉及3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、...

  • 点云PCL免费知识星球,点云论文速读。文章:Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles作者:Ern˝o Horváth  , Claudiu Pozna ,and Miklós Unger编译:点云PCL代码:http...

  • 文章:Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment作者:Xiyue Guo, Junjie Hu, Junfeng Chen, Fuqin Deng, T...

  • 点云PCL免费知识星球,点云论文速读。文章:Robust Place Recognition using an Imaging Lidar作者:Tixiao Shan, Brendan Englot, Fabio Duarte, Carlo Ratti, and Daniela Rus编译:点云PCL(ICRA 2021)开源代码:...

  • 文章:A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays作者:Jens Grubert , Yuta Itoh, Kenneth Moser编译:点云PCL本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PD...