点云配准的目标是根据原始点云和目标点云,通过配准求出变换矩阵,即旋转矩阵R和平移矩阵T,并计算误差,来比较匹配结果。主要有以下几种比较
基于局部特征描述子(PFH、FPFH、3Dsc,Shot等等);
icp配准 ;
基于概率分布 (NDT);
配准的一般步骤:
提取关键点
特征描述
一致性估计(以上可以概括为粗配准)
精配准
误差分析
注意:配准中,由于不同点云数据集的特性,需要提取不同关键点。
demo展示
汇总ICP资源
1,FilterReg: Robust and Efficient Probabilistic P
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准。点云的配准有手动配准依赖仪器的...
看龙书的时候发现一个矩阵在传入Shader之前都要转置一下,很好奇为什么要有一步这样的操作。行主序和列主序行主序指矩阵在内存中逐行存储,列主序指矩阵在内存中逐列存储。行主序矩阵内存布局:列主序矩阵内存布局:行向量和列向量行向量指的是把向量当成一个一行n列的矩阵,列向量指的是把向量当成一个n行一列的矩阵。左乘和右乘矩阵“左乘”:矩阵和向...
ORB-SLAM点云地图中相机的位姿初始化,无论算法工作在平面场景,还是非平面场景下,都能够完成初始化的工作。其中主要是使用了适用于平面场景的单应性矩阵H和适用于非平面场景的基础矩阵F,程序中通过一个评分规则来选择适合的模型,恢复相机的旋转矩阵R和平移矩阵t那么下面主要讲解关于对极几何中的基础矩阵,本质矩阵,和单应矩阵之间的区别与联...
矩阵可分为稠密矩阵和稀疏矩阵,对于稀疏矩阵而言,使用同样的内存来存储这个矩阵显然是对内存的浪费,那么我们就可以想办法将矩阵中所有的o元素挥着不相关元素剔除,怎么剔除,第一种方法是通过三个一维矩阵来存储原二维矩阵中的所有非0元素,三个矩阵分别为value、column、row, value 数组存储所有的非零元素, column 数...
void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; m – 目标矩阵。如果m在运算前没有合适的尺寸或类型,将被重新分配。rtype – 目标矩阵的类型。因为目标矩阵的通道数与源矩阵一样,所以rtype也可以看做是目标...
https://blog.csdn.net/jiangdf/article/details/8460012 glMatrixMode()函数的参数,这个函数其实就是对接下来要做什么进行一下声明,也就是在要做下一步之前告诉计算机我要对“什么”进行操作了,这个“什么”在glMatrixMode的“()”里的选项(参数)有3种模式: GL...
由OpenDigg 出品的前端开源项目月报第一期来啦。我们的前端开源月报集合了OpenDigg一个月来新收录的优质前端开源项目,方便前端开发人员便捷的找到自己需要的项目工具。 reactide React web应用开发的第一个专用IDE redux-offline 持久性Redux存储 react-loadable 用于加载组件的...