首页 > 大数据数据倾斜

大数据数据倾斜

什么是数据倾斜 

    简单的讲,数据倾斜就是我们在计算数据的时候,数据的分散度不够,导致大量的数据集中到了一台或者几台机器上计算,这些数据的计算速度远远低于平均计算速度,导致整个计算过程过慢。 

    相信大部分做数据的童鞋们都会遇到数据倾斜,数据倾斜会发生在数据开发的各个环节中,比如:

  • 用Hive算数据的时候reduce阶段卡在99.99%
  • 用SparkStreaming做实时算法时候,一直会有executor出现OOM的错误,但是其余的executor内存使用率却很低。 

        数据倾斜有一个关键因素是数据量大,可以达到千亿级。

    数据倾斜长的表现

    以Hadoop和Spark是最常见的两个计算平台,下面就以这两个平台说明:

1、Hadoop中的数据倾斜

    Hadoop中直接贴近用户使用使用的时Mapreduce程序和Hive程序,虽说Hive最后也是用MR来执行(至少目前Hive内存计算并不普及),但是毕竟写的内容逻辑区别很大,一个是程序,一个是Sql,因此这里稍作区分。

Hadoop中的数据倾斜主要表现在ruduce阶段卡在99.99%,一直99.99%不能结束。 

这里如果详细的看日志或者和监控界面的话会发现:

  • 有一个多几个reduce卡住
  • 各种container报错OOM
  • 读写的数据量极大,至少远远超过其它正常的reduce 

    伴随着数据倾斜,会出现任务被kill等各种诡异的表现。

经验: Hive的数据倾斜,一般都发生在Sql中Group和On上,而且和数据逻辑绑定比较深。

2、Spark中的数据倾斜

    Spark中的数据倾斜也很常见,这里包括Spark Streaming和Spark Sql,表现主要有下面几种:

  • Executor lost,OOM,Shuffle过程出错
  • Driver OOM
  • 单个Executor执行时间特别久,整体任务卡在某个阶段不能结束
  • 正常运行的任务突然失败

补充一下,在Spark streaming程序中,数据倾斜更容易出现,特别是在程序中包含一些类似sql的join、group这种操作的时候。 因为Spark Streaming程序在运行的时候,我们一般不会分配特别多的内存,因此一旦在这个过程中出现一些数据倾斜,就十分容易造成OOM。

数据倾斜的原理

1、数据倾斜产生的原因 

        我们以Spark和Hive的使用场景为例。他们在做数据运算的时候会设计到,countdistinct、group by、join等操作,这些都会触发Shuffle动作,一旦触发,所有相同key的值就会拉到一个或几个节点上,就容易发生单点问题。

2、万恶的shuffle 

        Shuffle是一个能产生奇迹的地方,不管是在Spark还是Hadoop中,它们的作用都是至关重要的。那么在Shuffle如何产生了数据倾斜?

Hadoop和Spark在Shuffle过程中产生数据倾斜的原理基本类似。如下图。 

这里写图片描述



        大部分数据倾斜的原理就类似于下图,很明了,因为数据分布不均匀,导致大量的数据分配到了一个节点。

 

3、从业务计角度来理解数据倾斜

        数据往往和业务是强相关的,业务的场景直接影响到了数据的分布。再举一个例子,比如就说订单场景吧,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。

如何解决

        数据倾斜的产生是有一些讨论的,解决它们也是有一些讨论的,本章会先给出几个解决数据倾斜的思路,然后对Hadoop和Spark分别给出一些解决数据倾斜的方案。 

一、几个思路 

    解决数据倾斜有这几个思路: 

        1.业务逻辑,我们从业务逻辑的层面上来优化数据倾斜,比如上面的例子,我们单独对这两个城市来做count,最后和其它城市做整合。 

        2.程序层面,比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个reduce,我们可以先group 再在外面包一层count,就可以了。 

        3.调参方面,Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

二、从业务和数据上解决数据倾斜

        很多数据倾斜都是在数据的使用上造成的。我们举几个场景,并分别给出它们的解决方案。 

数据分布不均匀: 

前面提到的“从数据角度来理解数据倾斜”和“从业务计角度来理解数据倾斜”中的例子,其实都是数据分布不均匀的类型,这种情况和计算平台无关,我们能通过设计的角度尝试解决它。

  • 有损的方法: 

                找到异常数据,比如ip为0的数据,过滤掉
  • 无损的方法: 

                对分布不均匀的数据,单独计算 

                先对key做一层hash,先将数据打散让它的并行度变大,再汇集 

    •数据预处理

三、Hadoop平台的优化方法

    列出来一些方法和思路,具体的参数和用法在官网看就行了。

        1.mapjoin方式 

        2.count distinct的操作,先转成group,再count 

        3.hive.groupby.skewindata=true 

        4.left semi jioin的使用 

        5.设置map端输出、中间结果压缩。(不完全是解决数据倾斜的问题,但是减少了IO读写和网络传输,能提高很多效率)

四、Spark平台的优化方法 

    列出来一些方法和思路,具体的参数和用法在官网看就行了。 

        1.mapjoin方式 

        2.设置rdd压缩 

        3.合理设置driver的内存 

        4.Spark Sql中的优化和Hive类似,可以参考Hive

总结

数据倾斜的坑还是很大的,如何处理数据倾斜是一个长期的过程,希望本文的一些思路能提供帮助。文中一些内容没有细讲,比如Hive Sql的优化,数据清洗中的各种坑,这些留待后面单独的分享,会有很多的内容。另外千亿级别的数据还会有更多的难点,不仅仅是数据倾斜的问题,这一点在后面也会有专门的分享。

转载于:https://www.cnblogs.com/gala1021/p/8552302.html

更多相关:

  • 本文是西门子开放式TCP通信的第2篇,上一篇我们讲了使用西门子1200PLC作为TCP服务器的程序编写,可以点击下方链接阅读:【公众号dotNet工控上位机:thinger_swj】基于Socket访问西门子PLC系列教程(一)在完成上述步骤后,接下来就是编写上位机软件与PLC之间进行通信。上位机UI界面设计如下图所示:从上图可以看出...

  • 我有一个大型数据集,列出了在全国不同地区销售的竞争对手产品。我希望通过使用这些新数据帧名称中的列值的迭代过程,根据区域将该数据帧分成几个其他区域,以便我可以分别处理每个数据帧-例如根据价格对每个地区的信息进行排序,以了解每个地区的市场情况。我给出了以下数据的简化版本:Competitor Region ProductA Product...

  • 作为一名IT从业者,我来回答一下这个问题。首先,对于具有Java编程基础的人来说,学习Python的初期并不会遇到太大的障碍,但是要结合自己的发展规划来制定学习规划,尤其要重视学习方向的选择。Java与Python都是比较典型的全场景编程语言,相比于Java语言来说,当前Python语言在大数据、人工智能领域的应用更为广泛一些,而且大...

  • 这段时间通过学习相关的知识,最大的变化就是看待事物更加喜欢去了解事物后面的本质,碰到问题后解决问题思路也发生了改变。举个具体的例子,我在学习数据分析,将来会考虑从事这方面的工作,需要掌握的相关专业知识这个问题暂且按下不表,那哪些具体的问题是我需要了解的呢,以下简单罗列:1、了解数据分析师这个岗位在各个地区的需求情况?2、数据分析师的薪...

  • 这一节将开始学习python的一个核心数据分析支持库---pandas,它是python数据分析实践与实战的必备高级工具。对于使用 Python 进行数据分析来说,pandas 几乎是无人不知,无人不晓的。今天,我们就来认识认识数据分析界鼎鼎大名的 pandas。目录一. pandas主要数据结构 SeriesDataFrame二...

  • Configuration    spark-env.sh        HADOOP_CONF_DIR=/opt/data02/hadoop-2.6.0-cdh5.4.0/etc/hadoop        JAVA_HOME=/opt/modules/jdk1.7.0_67        SCALA_HOME=/opt/modul...

  •       不多说,直接上干货!     SparkSQL 与 Spark Core的关系   Spark SQL构建在Spark Core之上,专门用来处理结构化数据(不仅仅是SQL)。   Spark SQL在Spark Core的基础上针对结构化数据处理进行很多优化和改进,   简单来讲:     Spark SQL 支持很多种...