首页 > Scrapy和MongoDB的应用

Scrapy和MongoDB的应用

Scrapy是Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取Web站点并从页面中提取结构化的数据.它最吸引人的地方在于任何人都可以根据需求方便的修改。

MongoDB是现下非常流行的开源的非关系型数据库(NoSql),它是以“key-value”的形式存储数据的,在大数据量、高并发、弱事务方面都有很大的优势。

当Scrapy与MongoDB两者相碰撞会产生怎样的火花呢?与MongoDB两者相碰撞会产生怎样的火花呢?现在让我们做一个简单的爬取小说的TEST

1.安装Scrapy

pip install scrapy

2.下载安装MongoDB和MongoVUE可视化

[MongoDB下载地址](https://www.mongodb.org/)

下载安装的步骤略过,在bin目录下创建一个data文件夹用来存放数据的。

[MongoVUE下载地址](http://www.mongovue.com/)

安装完成后我们需要创建一个数据库。

3.创建一个Scrapy项目

scrapy startproject novelspider

目录结构:其中的novspider.py是需要我们手动创建的(contrloDB不需要理会)

4.编写代码

目标网站: http://www.daomubiji.com/

settings.py

BOT_NAME = 'novelspider'SPIDER_MODULES = ['novelspider.spiders']
NEWSPIDER_MODULE = 'novelspider.spiders'ITEM_PIPELINES = ['novelspider.pipelines.NovelspiderPipeline']  #导入pipelines.py中的方法USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:39.0) Gecko/20100101 Firefox/39.0'
COOKIES_ENABLED = TrueMONGODB_HOST = '127.0.0.1'   
MONGODB_PORT = 27017
MONGODB_DBNAME = 'zzl'    #数据库名
MONGODB_DOCNAME = 'Book'   #表名

pipelines.py

from scrapy.conf import settings
import pymongo
class NovelspiderPipeline(object):def __init__(self):host = settings['MONGODB_HOST']port = settings['MONGODB_PORT']dbName = settings['MONGODB_DBNAME']client = pymongo.MongoClient(host=host, port=port)tdb = client[dbName]self.post = tdb[settings['MONGODB_DOCNAME']]def process_item(self, item, spider):bookInfo = dict(item)self.post.insert(bookInfo)return item

items.py

from scrapy import Item,Field
class NovelspiderItem(Item):# define the fields for your item here like:# name = scrapy.Field()bookName = Field()bookTitle = Field()chapterNum = Field()chapterName = Field()chapterURL = Field()

在spiders目录下创建novspider.py

from scrapy.spiders import CrawlSpider
from scrapy.selector import Selector
from novelspider.items import NovelspiderItem
class novSpider(CrawlSpider):name = "novspider"redis_key = 'novspider:start_urls'start_urls = ['http://www.daomubiji.com/']def parse(self,response):selector = Selector(response)table = selector.xpath('//table')for each in table:bookName = each.xpath('tr/td[@colspan="3"]/center/h2/text()').extract()[0]content = each.xpath('tr/td/a/text()').extract()url = each.xpath('tr/td/a/@href').extract()for i in range(len(url)):item = NovelspiderItem()item['bookName'] = bookNameitem['chapterURL'] = url[i]try:item['bookTitle'] = content[i].split(' ')[0]item['chapterNum'] = content[i].split(' ')[1]except Exception,e:continuetry:item['chapterName'] = content[i].split(' ')[2]except Exception,e:item['chapterName'] = content[i].split(' ')[1][-3:]yield item

5.启动项目命令: scrapy crawl novspider.

抓取结果

转载于:https://www.cnblogs.com/JackQ/p/4843701.html

更多相关: