首页 > python数据框 命名_Python-根据列值将数据框分为多个数据框,并用这些值命名 - python...

python数据框 命名_Python-根据列值将数据框分为多个数据框,并用这些值命名 - python...

我有一个大型数据集,列出了在全国不同地区销售的竞争对手产品。我希望通过使用这些新数据帧名称中的列值的迭代过程,根据区域将该数据帧分成几个其他区域,以便我可以分别处理每个数据帧-例如根据价格对每个地区的信息进行排序,以了解每个地区的市场情况。我给出了以下数据的简化版本:

Competitor Region ProductA ProductB

Comp1 A £10 £15

Comp1 B £11 £16

Comp1 C £11 £15

Comp2 A £9 £16

Comp2 B £12 £14

Comp2 C £14 £17

Comp3 A £11 £16

Comp3 B £10 £15

Comp3 C £12 £15

我可以使用以下内容创建区域列表:

region_list=df['Region'].unique().tolist()

我希望在产生大量数据帧的迭代循环中使用它,例如

df_A :

Competitor Region ProductA ProductB

Comp1 A £10 £15

Comp2 A £9 £16

Comp3 A £11 £16

我可以使用代码针对每个区域手动执行此操作

df_A=df.loc[df['Region']==A]

但是实际情况是,该数据集包含大量区域,这会使此代码变得乏味。有没有一种方法可以创建可重复此过程的迭代循环?有一个类似的问题询问有关拆分数据帧的问题,但答案并未显示如何根据每个列的值来标记输出。

我对Python还是很陌生,并且仍然在学习,因此,如果实际上有另一种更明智的方法来解决此问题,那么我很乐意提出建议。

参考方案

通过不同值进行子集称为groupby,如果仅想通过for循环遍历各个组,则语法为:

for region, df_region in df.groupby('Region'):

print(df_region)

Competitor Region ProductA ProductB

0 Comp1 A £10 £15

3 Comp2 A £9 £16

6 Comp3 A £11 £16

Competitor Region ProductA ProductB

1 Comp1 B £11 £16

4 Comp2 B £12 £14

7 Comp3 B £10 £15

Competitor Region ProductA ProductB

2 Comp1 C £11 £15

5 Comp2 C £14 £17

8 Comp3 C £12 £15

pandas DataFrame:根据另一列中的布尔值计算总和 - python

我对Python相当陌生,我尝试在pandas中模拟以下逻辑我目前正在循环抛出行,并希望对前几行的AMOUNT列中的值求和,但只求和最后一次看到的“ TRUE”值。实际数据似乎效率低下(我的数据框大约有500万行)?想知道用Python处理这种逻辑的有效方法是什么?逻辑:逻辑是,如果FLAG为TRUE,我想对前几行的AMOUNT列中的值求和,但只求和最后一次…Pandas Dataframe:在越来越多的列上循环并计算均值和标准差 - python

基本上,我有一个包含20个属性和一个值的表。我想找到std = 0-(即粒度级别完美允许1:1)所需的最少数量的属性。我想建立一个循环如果使用列名进行硬编码,则看起来像这样:for iter in range(1,21): dfcalc = df.groupby("LINE_NUM")["RATIO"].agg([np…pandas.DataFrame.replace更改列的dtype - python

因此,我试图用np.nan替换数据框中的None值,并注意到在此过程中,即使数据框中的float列的数据类型不包含任何丢失的数据,它们也都更改为object。举个例子:import pandas as pd import numpy as np data = pd.DataFrame({'A':np.nan,'B':1…重命名默认ID python - python

我想连接两个dataFrames,但是两个数据具有不同的ID,所以结果是错误的这是我的代码data=pd.DataFrame(df.columns) data1=data.drop(axis=1,index=[0,1,2,3]).transpose() data1 这是dataframe1另一个数据框:y=sma_algo(df.loc['H+L&…Python GPU资源利用 - python

我有一个Python脚本在某些深度学习模型上运行推理。有什么办法可以找出GPU资源的利用率水平?例如,使用着色器,float16乘法器等。我似乎在网上找不到太多有关这些GPU资源的文档。谢谢! 参考方案 您可以尝试在像Renderdoc这样的GPU分析器中运行pyxthon应用程序。它将分析您的跑步情况。您将能够获得有关已使用资源,已用缓冲区,不同渲染状态上…

更多相关:

  • 本文是西门子开放式TCP通信的第2篇,上一篇我们讲了使用西门子1200PLC作为TCP服务器的程序编写,可以点击下方链接阅读:【公众号dotNet工控上位机:thinger_swj】基于Socket访问西门子PLC系列教程(一)在完成上述步骤后,接下来就是编写上位机软件与PLC之间进行通信。上位机UI界面设计如下图所示:从上图可以看出...

  • 作为一名IT从业者,我来回答一下这个问题。首先,对于具有Java编程基础的人来说,学习Python的初期并不会遇到太大的障碍,但是要结合自己的发展规划来制定学习规划,尤其要重视学习方向的选择。Java与Python都是比较典型的全场景编程语言,相比于Java语言来说,当前Python语言在大数据、人工智能领域的应用更为广泛一些,而且大...

  • 这段时间通过学习相关的知识,最大的变化就是看待事物更加喜欢去了解事物后面的本质,碰到问题后解决问题思路也发生了改变。举个具体的例子,我在学习数据分析,将来会考虑从事这方面的工作,需要掌握的相关专业知识这个问题暂且按下不表,那哪些具体的问题是我需要了解的呢,以下简单罗列:1、了解数据分析师这个岗位在各个地区的需求情况?2、数据分析师的薪...

  • 这一节将开始学习python的一个核心数据分析支持库---pandas,它是python数据分析实践与实战的必备高级工具。对于使用 Python 进行数据分析来说,pandas 几乎是无人不知,无人不晓的。今天,我们就来认识认识数据分析界鼎鼎大名的 pandas。目录一. pandas主要数据结构 SeriesDataFrame二...

  • nan 是not a number ,inf是无穷大 numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素...

  • 简介 Simple Reference  基础CUDA示例,适用于初学者, 反映了运用CUDA和CUDA runtime APIs的一些基本概念.Utilities Reference  演示如何查询设备能力和衡量GPU/CPU 带宽的实例程序。Graphics Reference  图形化示例展现的是 CUDA, OpenGL,...

  • 在做开发的过程中难免需要给内核及下载的一些源码打补丁,所以我们先学习下Linux下使用如如何使用diff制作补丁以及如何使用patch打补丁。...

  • 我在调研ATS 4.2.3挂载SSD的过程中,遇到很多坑,特此详细记录我摸索的主要过程,以便大家以后避免之。 基本思路可以完全照搬参考文献[2][3] 下面的安装假定是以root用户身份进行的,Linux服务器已经安装好系统,磁盘已经做好分区。 首先需要认识我们的Linux服务器的硬件配置和软件情况 硬件配置: DELL...

  • 该博文整理一些在使用stl编程过程中遇到的小经验: 1.在多线程环境下面打印调试,如何使用cout及时刷新到屏幕上? 在C中我们经常这样使用: printf("Hello World "); fflush(stdout); 如果使用stl,我们可以这样使用: cout << "Hello World" << endl <...